updating vendor folder

This commit is contained in:
Sinuhe Tellez 2017-05-11 19:17:49 -04:00
parent 5a42df65e8
commit 0209571d87
10 changed files with 802 additions and 0 deletions

68
vendor/github.com/lann/builder/README.md generated vendored Normal file
View File

@ -0,0 +1,68 @@
# Builder - fluent immutable builders for Go
[![GoDoc](https://godoc.org/github.com/lann/builder?status.png)](https://godoc.org/github.com/lann/builder)
[![Build Status](https://travis-ci.org/lann/builder.png?branch=master)](https://travis-ci.org/lann/builder)
Builder was originally written for
[Squirrel](https://github.com/lann/squirrel), a fluent SQL generator. It
is probably the best example of Builder in action.
Builder helps you write **fluent** DSLs for your libraries with method chaining:
```go
resp := ReqBuilder.
Url("http://golang.org").
Header("User-Agent", "Builder").
Get()
```
Builder uses **immutable** persistent data structures
([these](https://github.com/mndrix/ps), specifically)
so that each step in your method chain can be reused:
```go
build := WordBuilder.AddLetters("Build")
builder := build.AddLetters("er")
building := build.AddLetters("ing")
```
Builder makes it easy to **build** structs using the **builder** pattern
(*surprise!*):
```go
import "github.com/lann/builder"
type Muppet struct {
Name string
Friends []string
}
type muppetBuilder builder.Builder
func (b muppetBuilder) Name(name string) muppetBuilder {
return builder.Set(b, "Name", name).(muppetBuilder)
}
func (b muppetBuilder) AddFriend(friend string) muppetBuilder {
return builder.Append(b, "Friends", friend).(muppetBuilder)
}
func (b muppetBuilder) Build() Muppet {
return builder.GetStruct(b).(Muppet)
}
var MuppetBuilder = builder.Register(muppetBuilder{}, Muppet{}).(muppetBuilder)
```
```go
MuppetBuilder.
Name("Beaker").
AddFriend("Dr. Honeydew").
Build()
=> Muppet{Name:"Beaker", Friends:[]string{"Dr. Honeydew"}}
```
## License
Builder is released under the
[MIT License](http://www.opensource.org/licenses/MIT).

225
vendor/github.com/lann/builder/builder.go generated vendored Normal file
View File

@ -0,0 +1,225 @@
// Package builder provides a method for writing fluent immutable builders.
package builder
import (
"github.com/lann/ps"
"go/ast"
"reflect"
)
// Builder stores a set of named values.
//
// New types can be declared with underlying type Builder and used with the
// functions in this package. See example.
//
// Instances of Builder should be treated as immutable. It is up to the
// implementor to ensure mutable values set on a Builder are not mutated while
// the Builder is in use.
type Builder struct {
builderMap ps.Map
}
var (
EmptyBuilder = Builder{ps.NewMap()}
emptyBuilderValue = reflect.ValueOf(EmptyBuilder)
)
func getBuilderMap(builder interface{}) ps.Map {
b := convert(builder, Builder{}).(Builder)
if b.builderMap == nil {
return ps.NewMap()
}
return b.builderMap
}
// Set returns a copy of the given builder with a new value set for the given
// name.
//
// Set (and all other functions taking a builder in this package) will panic if
// the given builder's underlying type is not Builder.
func Set(builder interface{}, name string, v interface{}) interface{} {
b := Builder{getBuilderMap(builder).Set(name, v)}
return convert(b, builder)
}
// Delete returns a copy of the given builder with the given named value unset.
func Delete(builder interface{}, name string) interface{} {
b := Builder{getBuilderMap(builder).Delete(name)}
return convert(b, builder)
}
// Append returns a copy of the given builder with new value(s) appended to the
// named list. If the value was previously unset or set with Set (even to a e.g.
// slice values), the new value(s) will be appended to an empty list.
func Append(builder interface{}, name string, vs ...interface{}) interface{} {
return Extend(builder, name, vs)
}
// Extend behaves like Append, except it takes a single slice or array value
// which will be concatenated to the named list.
//
// Unlike a variadic call to Append - which requires a []interface{} value -
// Extend accepts slices or arrays of any type.
//
// Extend will panic if the given value is not a slice, array, or nil.
func Extend(builder interface{}, name string, vs interface{}) interface{} {
if vs == nil {
return builder
}
maybeList, ok := getBuilderMap(builder).Lookup(name)
var list ps.List
if ok {
list, ok = maybeList.(ps.List)
}
if !ok {
list = ps.NewList()
}
forEach(vs, func(v interface{}) {
list = list.Cons(v)
})
return Set(builder, name, list)
}
func listToSlice(list ps.List, arrayType reflect.Type) reflect.Value {
size := list.Size()
slice := reflect.MakeSlice(arrayType, size, size)
for i := size - 1; i >= 0; i-- {
val := reflect.ValueOf(list.Head())
slice.Index(i).Set(val)
list = list.Tail()
}
return slice
}
var anyArrayType = reflect.TypeOf([]interface{}{})
// Get retrieves a single named value from the given builder.
// If the value has not been set, it returns (nil, false). Otherwise, it will
// return (value, true).
//
// If the named value was last set with Append or Extend, the returned value
// will be a slice. If the given Builder has been registered with Register or
// RegisterType and the given name is an exported field of the registered
// struct, the returned slice will have the same type as that field. Otherwise
// the slice will have type []interface{}. It will panic if the given name is a
// registered struct's exported field and the value set on the Builder is not
// assignable to the field.
func Get(builder interface{}, name string) (interface{}, bool) {
val, ok := getBuilderMap(builder).Lookup(name)
if !ok {
return nil, false
}
list, isList := val.(ps.List)
if isList {
arrayType := anyArrayType
if ast.IsExported(name) {
structType := getBuilderStructType(reflect.TypeOf(builder))
if structType != nil {
field, ok := (*structType).FieldByName(name)
if ok {
arrayType = field.Type
}
}
}
val = listToSlice(list, arrayType).Interface()
}
return val, true
}
// GetMap returns a map[string]interface{} of the values set in the given
// builder.
//
// See notes on Get regarding returned slices.
func GetMap(builder interface{}) map[string]interface{} {
m := getBuilderMap(builder)
structType := getBuilderStructType(reflect.TypeOf(builder))
ret := make(map[string]interface{}, m.Size())
m.ForEach(func(name string, val ps.Any) {
list, isList := val.(ps.List)
if isList {
arrayType := anyArrayType
if structType != nil {
field, ok := (*structType).FieldByName(name)
if ok {
arrayType = field.Type
}
}
val = listToSlice(list, arrayType).Interface()
}
ret[name] = val
})
return ret
}
// GetStruct builds a new struct from the given registered builder.
// It will return nil if the given builder's type has not been registered with
// Register or RegisterValue.
//
// All values set on the builder with names that start with an uppercase letter
// (i.e. which would be exported if they were identifiers) are assigned to the
// corresponding exported fields of the struct.
//
// GetStruct will panic if any of these "exported" values are not assignable to
// their corresponding struct fields.
func GetStruct(builder interface{}) interface{} {
structVal := newBuilderStruct(reflect.TypeOf(builder))
if structVal == nil {
return nil
}
return scanStruct(builder, structVal)
}
// GetStructLike builds a new struct from the given builder with the same type
// as the given struct.
//
// All values set on the builder with names that start with an uppercase letter
// (i.e. which would be exported if they were identifiers) are assigned to the
// corresponding exported fields of the struct.
//
// ScanStruct will panic if any of these "exported" values are not assignable to
// their corresponding struct fields.
func GetStructLike(builder interface{}, strct interface{}) interface{} {
structVal := reflect.New(reflect.TypeOf(strct)).Elem()
return scanStruct(builder, &structVal)
}
func scanStruct(builder interface{}, structVal *reflect.Value) interface{} {
getBuilderMap(builder).ForEach(func(name string, val ps.Any) {
if ast.IsExported(name) {
field := structVal.FieldByName(name)
var value reflect.Value
switch v := val.(type) {
case nil:
switch field.Kind() {
case reflect.Chan, reflect.Func, reflect.Interface, reflect.Map, reflect.Ptr, reflect.Slice:
value = reflect.Zero(field.Type())
}
// nil is not valid for this Type; Set will panic
case ps.List:
value = listToSlice(v, field.Type())
default:
value = reflect.ValueOf(val)
}
field.Set(value)
}
})
return structVal.Interface()
}

24
vendor/github.com/lann/builder/reflect.go generated vendored Normal file
View File

@ -0,0 +1,24 @@
package builder
import "reflect"
func convert(from interface{}, to interface{}) interface{} {
return reflect.
ValueOf(from).
Convert(reflect.TypeOf(to)).
Interface()
}
func forEach(s interface{}, f func(interface{})) {
val := reflect.ValueOf(s)
kind := val.Kind()
if kind != reflect.Slice && kind != reflect.Array {
panic(&reflect.ValueError{Method: "builder.forEach", Kind: kind})
}
l := val.Len()
for i := 0; i < l; i++ {
f(val.Index(i).Interface())
}
}

49
vendor/github.com/lann/builder/registry.go generated vendored Normal file
View File

@ -0,0 +1,49 @@
package builder
import "reflect"
var registry = make(map[reflect.Type]reflect.Type)
// RegisterType maps the given builderType to a structType.
// This mapping affects the type of slices returned by Get and is required for
// GetStruct to work.
//
// Returns a Value containing an empty instance of the registered builderType.
//
// RegisterType will panic if builderType's underlying type is not Builder or
// if structType's Kind is not Struct.
func RegisterType(builderType reflect.Type, structType reflect.Type) *reflect.Value {
structType.NumField() // Panic if structType is not a struct
registry[builderType] = structType
emptyValue := emptyBuilderValue.Convert(builderType)
return &emptyValue
}
// Register wraps RegisterType, taking instances instead of Types.
//
// Returns an empty instance of the registered builder type which can be used
// as the initial value for builder expressions. See example.
func Register(builderProto interface{}, structProto interface{}) interface{} {
empty := RegisterType(
reflect.TypeOf(builderProto),
reflect.TypeOf(structProto),
).Interface()
return empty
}
func getBuilderStructType(builderType reflect.Type) *reflect.Type {
structType, ok := registry[builderType]
if !ok {
return nil
}
return &structType
}
func newBuilderStruct(builderType reflect.Type) *reflect.Value {
structType := getBuilderStructType(builderType)
if structType == nil {
return nil
}
newStruct := reflect.New(*structType).Elem()
return &newStruct
}

7
vendor/github.com/lann/ps/LICENSE generated vendored Normal file
View File

@ -0,0 +1,7 @@
Copyright (c) 2013 Michael Hendricks
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

10
vendor/github.com/lann/ps/README.md generated vendored Normal file
View File

@ -0,0 +1,10 @@
**This is a stable fork of https://github.com/mndrix/ps; it will not introduce breaking changes.**
ps
==
Persistent data structures for Go. See the [full package documentation](http://godoc.org/github.com/lann/ps)
Install with
go get github.com/lann/ps

93
vendor/github.com/lann/ps/list.go generated vendored Normal file
View File

@ -0,0 +1,93 @@
package ps
// List is a persistent list of possibly heterogenous values.
type List interface {
// IsNil returns true if the list is empty
IsNil() bool
// Cons returns a new list with val as the head
Cons(val Any) List
// Head returns the first element of the list;
// panics if the list is empty
Head() Any
// Tail returns a list with all elements except the head;
// panics if the list is empty
Tail() List
// Size returns the list's length. This takes O(1) time.
Size() int
// ForEach executes a callback for each value in the list.
ForEach(f func(Any))
// Reverse returns a list whose elements are in the opposite order as
// the original list.
Reverse() List
}
// Immutable (i.e. persistent) list
type list struct {
depth int // the number of nodes after, and including, this one
value Any
tail *list
}
// An empty list shared by all lists
var nilList = &list{}
// NewList returns a new, empty list. The result is a singly linked
// list implementation. All lists share an empty tail, so allocating
// empty lists is efficient in time and memory.
func NewList() List {
return nilList
}
func (self *list) IsNil() bool {
return self == nilList
}
func (self *list) Size() int {
return self.depth
}
func (tail *list) Cons(val Any) List {
var xs list
xs.depth = tail.depth + 1
xs.value = val
xs.tail = tail
return &xs
}
func (self *list) Head() Any {
if self.IsNil() {
panic("Called Head() on an empty list")
}
return self.value
}
func (self *list) Tail() List {
if self.IsNil() {
panic("Called Tail() on an empty list")
}
return self.tail
}
// ForEach executes a callback for each value in the list
func (self *list) ForEach(f func(Any)) {
if self.IsNil() {
return
}
f(self.Head())
self.Tail().ForEach(f)
}
// Reverse returns a list with elements in opposite order as this list
func (self *list) Reverse() List {
reversed := NewList()
self.ForEach(func(v Any) { reversed = reversed.Cons(v) })
return reversed
}

311
vendor/github.com/lann/ps/map.go generated vendored Normal file
View File

@ -0,0 +1,311 @@
// Fully persistent data structures. A persistent data structure is a data
// structure that always preserves the previous version of itself when
// it is modified. Such data structures are effectively immutable,
// as their operations do not update the structure in-place, but instead
// always yield a new structure.
//
// Persistent
// data structures typically share structure among themselves. This allows
// operations to avoid copying the entire data structure.
package ps
import (
"bytes"
"fmt"
)
// Any is a shorthand for Go's verbose interface{} type.
type Any interface{}
// A Map associates unique keys (type string) with values (type Any).
type Map interface {
// IsNil returns true if the Map is empty
IsNil() bool
// Set returns a new map in which key and value are associated.
// If the key didn't exist before, it's created; otherwise, the
// associated value is changed.
// This operation is O(log N) in the number of keys.
Set(key string, value Any) Map
// Delete returns a new map with the association for key, if any, removed.
// This operation is O(log N) in the number of keys.
Delete(key string) Map
// Lookup returns the value associated with a key, if any. If the key
// exists, the second return value is true; otherwise, false.
// This operation is O(log N) in the number of keys.
Lookup(key string) (Any, bool)
// Size returns the number of key value pairs in the map.
// This takes O(1) time.
Size() int
// ForEach executes a callback on each key value pair in the map.
ForEach(f func(key string, val Any))
// Keys returns a slice with all keys in this map.
// This operation is O(N) in the number of keys.
Keys() []string
String() string
}
// Immutable (i.e. persistent) associative array
const childCount = 8
const shiftSize = 3
type tree struct {
count int
hash uint64 // hash of the key (used for tree balancing)
key string
value Any
children [childCount]*tree
}
var nilMap = &tree{}
// Recursively set nilMap's subtrees to point at itself.
// This eliminates all nil pointers in the map structure.
// All map nodes are created by cloning this structure so
// they avoid the problem too.
func init() {
for i := range nilMap.children {
nilMap.children[i] = nilMap
}
}
// NewMap allocates a new, persistent map from strings to values of
// any type.
// This is currently implemented as a path-copying binary tree.
func NewMap() Map {
return nilMap
}
func (self *tree) IsNil() bool {
return self == nilMap
}
// clone returns an exact duplicate of a tree node
func (self *tree) clone() *tree {
var m tree
m = *self
return &m
}
// constants for FNV-1a hash algorithm
const (
offset64 uint64 = 14695981039346656037
prime64 uint64 = 1099511628211
)
// hashKey returns a hash code for a given string
func hashKey(key string) uint64 {
hash := offset64
for _, codepoint := range key {
hash ^= uint64(codepoint)
hash *= prime64
}
return hash
}
// Set returns a new map similar to this one but with key and value
// associated. If the key didn't exist, it's created; otherwise, the
// associated value is changed.
func (self *tree) Set(key string, value Any) Map {
hash := hashKey(key)
return setLowLevel(self, hash, hash, key, value)
}
func setLowLevel(self *tree, partialHash, hash uint64, key string, value Any) *tree {
if self.IsNil() { // an empty tree is easy
m := self.clone()
m.count = 1
m.hash = hash
m.key = key
m.value = value
return m
}
if hash != self.hash {
m := self.clone()
i := partialHash % childCount
m.children[i] = setLowLevel(self.children[i], partialHash>>shiftSize, hash, key, value)
recalculateCount(m)
return m
}
// replacing a key's previous value
m := self.clone()
m.value = value
return m
}
// modifies a map by recalculating its key count based on the counts
// of its subtrees
func recalculateCount(m *tree) {
count := 0
for _, t := range m.children {
count += t.Size()
}
m.count = count + 1 // add one to count ourself
}
func (m *tree) Delete(key string) Map {
hash := hashKey(key)
newMap, _ := deleteLowLevel(m, hash, hash)
return newMap
}
func deleteLowLevel(self *tree, partialHash, hash uint64) (*tree, bool) {
// empty trees are easy
if self.IsNil() {
return self, false
}
if hash != self.hash {
i := partialHash % childCount
child, found := deleteLowLevel(self.children[i], partialHash>>shiftSize, hash)
if !found {
return self, false
}
newMap := self.clone()
newMap.children[i] = child
recalculateCount(newMap)
return newMap, true // ? this wasn't in the original code
}
// we must delete our own node
if self.isLeaf() { // we have no children
return nilMap, true
}
/*
if self.subtreeCount() == 1 { // only one subtree
for _, t := range self.children {
if t != nilMap {
return t, true
}
}
panic("Tree with 1 subtree actually had no subtrees")
}
*/
// find a node to replace us
i := -1
size := -1
for j, t := range self.children {
if t.Size() > size {
i = j
size = t.Size()
}
}
// make chosen leaf smaller
replacement, child := self.children[i].deleteLeftmost()
newMap := replacement.clone()
for j := range self.children {
if j == i {
newMap.children[j] = child
} else {
newMap.children[j] = self.children[j]
}
}
recalculateCount(newMap)
return newMap, true
}
// delete the leftmost node in a tree returning the node that
// was deleted and the tree left over after its deletion
func (m *tree) deleteLeftmost() (*tree, *tree) {
if m.isLeaf() {
return m, nilMap
}
for i, t := range m.children {
if t != nilMap {
deleted, child := t.deleteLeftmost()
newMap := m.clone()
newMap.children[i] = child
recalculateCount(newMap)
return deleted, newMap
}
}
panic("Tree isn't a leaf but also had no children. How does that happen?")
}
// isLeaf returns true if this is a leaf node
func (m *tree) isLeaf() bool {
return m.Size() == 1
}
// returns the number of child subtrees we have
func (m *tree) subtreeCount() int {
count := 0
for _, t := range m.children {
if t != nilMap {
count++
}
}
return count
}
func (m *tree) Lookup(key string) (Any, bool) {
hash := hashKey(key)
return lookupLowLevel(m, hash, hash)
}
func lookupLowLevel(self *tree, partialHash, hash uint64) (Any, bool) {
if self.IsNil() { // an empty tree is easy
return nil, false
}
if hash != self.hash {
i := partialHash % childCount
return lookupLowLevel(self.children[i], partialHash>>shiftSize, hash)
}
// we found it
return self.value, true
}
func (m *tree) Size() int {
return m.count
}
func (m *tree) ForEach(f func(key string, val Any)) {
if m.IsNil() {
return
}
// ourself
f(m.key, m.value)
// children
for _, t := range m.children {
if t != nilMap {
t.ForEach(f)
}
}
}
func (m *tree) Keys() []string {
keys := make([]string, m.Size())
i := 0
m.ForEach(func(k string, v Any) {
keys[i] = k
i++
})
return keys
}
// make it easier to display maps for debugging
func (m *tree) String() string {
keys := m.Keys()
buf := bytes.NewBufferString("{")
for _, key := range keys {
val, _ := m.Lookup(key)
fmt.Fprintf(buf, "%s: %s, ", key, val)
}
fmt.Fprintf(buf, "}\n")
return buf.String()
}

3
vendor/github.com/lann/ps/profile.sh generated vendored Executable file
View File

@ -0,0 +1,3 @@
#!/bin/sh
go test -c
./ps.test -test.run=none -test.bench=$2 -test.$1profile=$1.profile

12
vendor/vendor.json vendored
View File

@ -2,6 +2,18 @@
"comment": "",
"ignore": "test",
"package": [
{
"checksumSHA1": "3dA3PsgYXZXzfsOOdDDvyp8zO0w=",
"path": "github.com/lann/builder",
"revision": "f22ce00fd9394014049dad11c244859432bd6820",
"revisionTime": "2015-08-08T15:11:31Z"
},
{
"checksumSHA1": "nR871nUQ6KxGoDR+TdgQhGUqcHI=",
"path": "github.com/lann/ps",
"revision": "62de8c46ede02a7675c4c79c84883eb164cb71e3",
"revisionTime": "2015-08-10T15:23:59Z"
},
{
"checksumSHA1": "LGXeoFu5U86xjYFW3YCY3rOIa+o=",
"path": "golang.org/x/tools/blog/atom",